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Short Papers

On the Evaluation of Modal Coupling Coefficients y
by Contour Integrals

Maurizio Bozzi, Giuseppe Conciauro, and Luca Perregrini

Abstract—The coupling coefficients between two waveguide modes or
between a waveguide and a Floquet mode can be written in terms of line
integrals on the boundary of the smaller waveguide. However, some of these
integrals give rise to indeterminate forms when the cutoff frequencies of the >
two modes coincide, thus making these expressions useless from a numer- 0 X
ical point of view. In this paper, alternative line-integral expressions are

derived, which remove the indeterminacy and are applicable also when the Fig. 1. Geometry considered in the calculation of the coupling integrals: the
cutoff frequencies are very close or even coincident. eigenfunctions? or ¢ are defined in the domaifi, andF is defined inQ2. The

. . - ... eigenfunctionF,,, introduced in Section Il, is defined in the expanded domain
Index Terms—Modal analysis, modal coupling coefficients, periodic Qq e P
structures, waveguides. e

.. cnn

~

_ _ _ Iy = / o2 (8)
Many numerical methods for the analysis of electromagnetic struc- as 0L

tures (9-9-‘ waveguiqle qiscontinuities [11-{3], boxed monolithic r,"i?vherew is the eigenvalue associatediimr ¢, andk is the eigenvalue
crowave integrated circuits (MMICs) [4], [5], and frequency seIecwﬁssociated tdF. The use of (5)—(8) is particularly convenient in cases

surfaces [6], [7]) require the calculation of modal coupling coel"ficienta7here one or both eigenfunctions are calculated numerically.
represented by one of the following integrals:

|. INTRODUCTION

Coupling coefficientd; andZ, are finite also forx = %, and this

- implies that (5) and (6) are indeterminate forms (0/0) in this particular
= / Vi - VFdAS (1)  case. Actually, due to numerical approximations in the calculation of
2 the eigenfunctions, integrals appearing in (5) and (6) are not exactly
I, = / Vo -VFdS (2) zerowhens = k, and this gives rise to large errors when the eigen-
3 values are very close. Such an event is far from being rare, when a large
Ty = / Vi VFE X @.dS (8) number of eigenfunctions are considered.
s In this paper, we derive alternative line-integral expressiong{or
Ty = / Vo -VF xi.dS ) andZ, which remove the indeterminacy of (5) and (6), thus preventing
S

the said troubles.

wherey andg, defined in the domaif (see Fig. 1), are eigenfunctions

of the Helmholtz equation with the Dirichelet and Neumann boundary Il. REMOVING THE INDETERMINACY

conditions, respectivelyr, defined in the domaif including S, is an The eigenfunction” and the eigenvalué satisfy the Helmholtz
eigenfunction of the Helmholtz equation with Dirichelet, Neumann, asquation. Let us consider a polar coordinate system)( where the
periodic boundary condition, dependent on the particular applicatiofigin of the system can be chosen arbitrarily. Introducing the normal-

[1]-[7]. S andf2 are arbitrarily shaped, with the obvious limitation orized radiusl? = kr, the Helmholtz equation can be written as
) in cases wheré satisfies a periodic boundary condition (Floquet

mode). Since the derivation to follow can be performed regardless to the 10 por 1 *F L F=0
boundary condition satisfied [, the same symbol is used to represent ROR™OR I 0¢”
the func_tlon in all cases. . ) which evidences that
By using Green'’s identities and the properties/ofs, and.F, inte-
grals (1)—(4) can be transformed from surface to line integrals, as shown Fr,p) = flkr, @). )
in [5], [6], [8], [9]
2 -y It is evident that the domaif?,. of the function
S , i
hEpoa fy o ® Fulr) = (sr, 9) (10)
K2 " OF ) ) )
Ly=—as ¢, U (6) differs from the domain2 of F for a contraction£ > k) or an ex-
V= RT Jas

pansion ¢ < k) around the origin (Fig. 1). It is also evident th&f

satisfies the Helmholtz equation
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ghd the same boundary conditionasover the boundary df... Both
the functionsF and F,, can be continued analytically outside their
respective domains, so that. is defined in the whole domaifi, even
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if £ is not totally included irf2,, like in Fig. 1. In particularF, is [lI. ANALYTICAL FORMULAS FORPARTICULAR CASES
defined over the boundags.

We observe that, due to the boundary conditios: 0 overdsS, we
have

In some particular cases, where the eigenfuncfois known ana-
lytically, expressions of" were derived, which are valid for any value
of x/k. In the following, expressions are reported in the cases of rect-
/‘ oy Fodl = / < oY L OF. ) 2 angular waveguide modes and of Floquet modes.

1] as

< an

“on v on
A. Rectangular Waveguide Modes

= ‘ /2"/)—r/v 72 ) d
/j(f“v U= OV Fy)dS In the case of a TM mode of a rectangular wavegui@iés given by
=0
Fl(z, y) = Asin(kex) sin(kyy) (18)
because botly and.F,; are eigenfunctions of the Helmholtz equation, . o 9 R -
with the same eigenvalue By a similar reasoning we can show thatWherEA is the normalization factor ankf, + kj = &”. Specific ex-

due to the boundary conditigis/9n = 0 overd$, we also have pressions of.. andk, are well known [10]. By using (14), it can be

derived
éo(;f (=0 ]—"(r y) = 4isin L—i—ko sinc '_ka
n r,y) =/ 2‘ Zk " 2"1']»
As a consequence, the integrals in (5) and (8) remain unchanged if O . (K4 E K —
is replaced with” — F,.. Then, introducing the function —Agsin < % ‘5) sine < ‘5) (19)
r_ o F=TFk where
F =k pry— (11)
we can write o =kex +kyy
6 =kex —kyy
/ J—"% de (12) L
- B andsinc(a) = sin(na)/ma.
! In the case of & £ mode,F is given b
( " " F(zx, y) = Bcos(k,x) cos(kyy) (20)
From (10) and (9) we infer ) o ) ] )
where B is the normalization factor. By using (14), it can be derived
K
S 0) = AT that
fh,(raﬁ-‘) }—(kra‘f') \ .
1o _ _po K+ k . K=k
so that Flx,y) = B2 sin < % J) sinc < ok J)
, Fgr )= F(r,¢) s K+ k =k
r,p) = - ~. 14 —B=si i .
Fir, ) ] (14) B2 sin < T 6) sinc < ok 6) (22)
Solutions of the Helmholtz equation are continuously differentiable, so
that we can write B. Floguet Modes
m , In the case of a Floquet modg; is given by
1 amF(r,
f(j'a@) 7:(’/»/)"‘2 - (n) ?) (k"'_7’> (kyzthyy)
m! 1 q ‘7_'(7.* U) — C(J T T Y (22)
when whereC is the normalization factor arig + k. = &*. Specific expres-
/ < g () ok _— sions ofk,; andk, are given in [11]. By using (14), it can be derived
F = ¢ rne) (_ - 1) . (15) that
m! drm k

m=1

o N = it i (k) 2Ry o (R
In cases where the eigenfunctidris known analytically (e.g.F is the Fla.y)=jCoae e < ok ”) : (23)
potential of a mode of a rectangular or circular waveguide) the function

F' can be evaluated with good accuracy by using (14), eveisifrery

close tox. In particular, in the critical cask =  the functionF’ is IV. NUMERICAL EXAMPLES
given by the first term of the power expansion In this section we discuss through examples the numerical problems
OF(r, o) connected with the use of (5) and (6), and how both the exact and the ap-
F'= 7'07; (casek = k). (16) proximated expressions derived in this paper permit to overcome these
problems.
In cases wheré and its first and second radial derivatives are known The first case we consider is the calculation of the coupling coeffi-
numerically, the expression cients between two rectangular waveguides. When the eigenvalues and
» , 2 a2 ) eigenfunctions are known analytically, the calculation of the coupling
Fl = Tf)f(ar, ?) + % g ];(72’ ?) (% — 1) (17) coefficients by using (5) and (6) fails only whenand % are exactly
" " )

coincident. Whem: = k, expressions (12) and (13) can be used in con-

can be used to obtain a good approximatiotFof whenk is close to  junction with (16).

K. Conversely, when the eigensolutions of the Helmholtz equation are
In conclusion, the use of (12) and (13) removes any problem derivinbtained numerically, the use of (5) and (6) fails when the two eigen-

from the indeterminacy of expressions (5) and (6} at «. values are close. In fact, in expressions (5) and (6), the denominator
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Fig. 2. Cross section of the cross-shaped wavegfiided of the rectangular

a
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sion ranges from 12.96 to 10.66 mm, so that the riafie ranges from
0.95 to 1.05. In Fig. 3, the dots denote the integral calculated by (5),
the black line refers to the exact calculation obtained by using (12)
and (19), whereas the gray line refers to the approximated calculation
obtained by using (12) and (17).

It is worth observing that no problem is encountered at any value
of the ratiok /x when using (12) and (19). Conversely, the use of (5)
provides the proper value of the integratiindx are different enough
(say, more thas=2.5%), while a significant discrepancy from the exact
value is found whert =~ . Finally, the use of (12) and (17) leads to
a good approximation of the integralif~ « [i.e., exactly where (5)
fails]. Therefore, itis a valid solution when the analytical expression of
F' is not available, provided that radial derivatives appearing in (17)
can be calculated numerically with a sufficient accuracy.

V. CONCLUSION

Alternative line-integral expressions were derived for the calcula-
tion of modal coupling integrals, which are valid also when the cutoff
frequencies of the two eigenfunctions coincide. Coupling coefficients
were obtained in the form of a power expansion. In particular cases,
closed forms were found. An example demonstrates the effectiveness

waveguidef).
-0.1 .
B -0.12 7
g
E
.DE‘) -0.14 1
)
3 .
0.16 ° classical formula
- approx formula [1]
— exact formula *
-0.18 T T T
0.95 0.975 1 1.025 1.05 2]
k/x

Fig. 3. Coupling integraf; between the first TM mode of the cross-shaped [3]
waveguide and th@'M,. of the rectangular waveguide: the dots are obtained
by (5), the black line by (12) and (19), and the gray line by (12) and (17).

vanishes wher = k, whereas the numerator is not exactly zero when

x = k. This phenomenon is the origin of large errors in the calculation

of the coupling coefficients, as highlighted in the following example. [5]
We consider the calculation of the coupling integfalbetween the

TM modes of a rectangular and a cross-shaped waveguide (see Fig. 2).

The normalizatiory,, +»* dS = x* and f,, 7* dS = k” is assumed. In  [g]

this example, the eigenfunctian of the cross-shaped waveguide was

obtained numerically by using the boundary integral-resonant mode

expansion (BI-RME) method [12]. 7]
Since the larger waveguide is rectangular, three different expressions
can be used for the calculation of the coupling inte@ralthe clas- [8]
sical expression (5), which exhibits the indeterminacy wheg: «;
thenovelformula (12) with the analytical expression (19)®f, which [l

can be evaluated without numerical problems for aayndx ; thenovel

formula (12) with the approximated expression (19)6f which pro-

vides accurate results #f ~ &. [10]
Fig. 3 shows the value of the coupling integral between the

first TM-mode eigenfunction of the cross-shaped Waveguide[n]

(v = 1305 m~') and the modd'M,. of the rectangular waveguide, [12]

when varying the dimensian of the rectangular domain. This dimen-

of these formulas.
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