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On the Evaluation of Modal Coupling Coefficients
by Contour Integrals

Maurizio Bozzi, Giuseppe Conciauro, and Luca Perregrini

Abstract—The coupling coefficients between two waveguide modes or
between a waveguide and a Floquet mode can be written in terms of line
integrals on the boundary of the smaller waveguide. However, some of these
integrals give rise to indeterminate forms when the cutoff frequencies of the
two modes coincide, thus making these expressions useless from a numer-
ical point of view. In this paper, alternative line-integral expressions are
derived, which remove the indeterminacy and are applicable also when the
cutoff frequencies are very close or even coincident.

Index Terms—Modal analysis, modal coupling coefficients, periodic
structures, waveguides.

I. INTRODUCTION

Many numerical methods for the analysis of electromagnetic struc-
tures (e.g., waveguide discontinuities [1]–[3], boxed monolithic mi-
crowave integrated circuits (MMICs) [4], [5], and frequency selective
surfaces [6], [7]) require the calculation of modal coupling coefficients,
represented by one of the following integrals:

I1 =

S

r � rF dS (1)

I2 =

S

r� � rF dS (2)

I3 =

S

r � rF � ~uz dS (3)

I4 =

S

r� � rF � ~uz dS (4)

where and�, defined in the domainS (see Fig. 1), are eigenfunctions
of the Helmholtz equation with the Dirichelet and Neumann boundary
conditions, respectively;F , defined in the domain
 includingS, is an
eigenfunction of the Helmholtz equation with Dirichelet, Neumann, or
periodic boundary condition, dependent on the particular application
[1]–[7]. S and
 are arbitrarily shaped, with the obvious limitation on

 in cases whereF satisfies a periodic boundary condition (Floquet
mode). Since the derivation to follow can be performed regardless to the
boundary condition satisfied byF , the same symbol is used to represent
the function in all cases.

By using Green’s identities and the properties of , �, andF , inte-
grals (1)–(4) can be transformed from surface to line integrals, as shown
in [5], [6], [8], [9]
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Fig. 1. Geometry considered in the calculation of the coupling integrals: the
eigenfunctions or � are defined in the domainS, andF is defined in
. The
eigenfunctionF , introduced in Section II, is defined in the expanded domain
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I3 =0 (7)
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where� is the eigenvalue associated to or�, andk is the eigenvalue
associated toF . The use of (5)–(8) is particularly convenient in cases
where one or both eigenfunctions are calculated numerically.

Coupling coefficientsI1 andI2 are finite also for� = k, and this
implies that (5) and (6) are indeterminate forms (0/0) in this particular
case. Actually, due to numerical approximations in the calculation of
the eigenfunctions, integrals appearing in (5) and (6) are not exactly
zero when� = k, and this gives rise to large errors when the eigen-
values are very close. Such an event is far from being rare, when a large
number of eigenfunctions are considered.

In this paper, we derive alternative line-integral expressions forI1

andI2, which remove the indeterminacy of (5) and (6), thus preventing
the said troubles.

II. REMOVING THE INDETERMINACY

The eigenfunctionF and the eigenvaluek satisfy the Helmholtz
equation. Let us consider a polar coordinate system (r; '), where the
origin of the system can be chosen arbitrarily. Introducing the normal-
ized radiusR = kr, the Helmholtz equation can be written as
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R

@

@R
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@R
+
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@2F

@'2
+ F = 0

which evidences that

F(r; ') = f(kr; '): (9)

It is evident that the domain
� of the function

F�(r; ') = f(�r; ') (10)

differs from the domain
 of F for a contraction (� > k) or an ex-
pansion (� < k) around the origin (Fig. 1). It is also evident thatF�
satisfies the Helmholtz equation

r
2
F� + �

2
F� = 0

and the same boundary condition asF , over the boundary of
�. Both
the functionsF andF� can be continued analytically outside their
respective domains, so thatF� is defined in the whole domain
, even

0018-9480/02$17.00 © 2002 IEEE



1854 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 7, JULY 2002

if 
 is not totally included in
�, like in Fig. 1. In particularF� is
defined over the boundary@S.

We observe that, due to the boundary condition = 0 over@S, we
have
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=0

because both andF� are eigenfunctions of the Helmholtz equation,
with the same eigenvalue�. By a similar reasoning we can show that,
due to the boundary condition@�=@n = 0 over@S, we also have

@S

�
@F�
@n

d` = 0:

As a consequence, the integrals in (5) and (8) remain unchanged ifF

is replaced withF � F�. Then, introducing the function

F
0 = k

F � F�

k � �
(11)

we can write

I1 =
k

k + � @S

F
0 @ 

@n
d` (12)

I2 =�
�2

k(k + �) @S

�
@F 0

@n
d`: (13)

From (10) and (9) we infer

F�(r; ') = F
�

k
r; '

so that

F
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F
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: (14)

Solutions of the Helmholtz equation are continuously differentiable, so
that we can write
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In cases where the eigenfunctionF is known analytically (e.g.,F is the
potential of a mode of a rectangular or circular waveguide) the function
F
0 can be evaluated with good accuracy by using (14), even ifk is very

close to�. In particular, in the critical casek = � the functionF 0 is
given by the first term of the power expansion

F
0 = r

@F(r; ')

@r
(casek = �): (16)

In cases whereF and its first and second radial derivatives are known
numerically, the expression

F
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�

k
� 1 (17)

can be used to obtain a good approximation ofF
0, whenk is close to

�.
In conclusion, the use of (12) and (13) removes any problem deriving

from the indeterminacy of expressions (5) and (6) atk = �.

III. A NALYTICAL FORMULAS FORPARTICULAR CASES

In some particular cases, where the eigenfunctionF is known ana-
lytically, expressions ofF 0 were derived, which are valid for any value
of �=k. In the following, expressions are reported in the cases of rect-
angular waveguide modes and of Floquet modes.

A. Rectangular Waveguide Modes

In the case of a TM mode of a rectangular waveguide,F is given by

F(x; y) = A sin(kxx) sin(kyy) (18)

whereA is the normalization factor andk2x + k2y = k2. Specific ex-
pressions ofkx andky are well known [10]. By using (14), it can be
derived

F
0(x; y) = A
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2
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where

� = kxx+ kyy

� = kxx� kyy

andsinc(�) = sin(��)=��.
In the case of aTE mode,F is given by

F(x; y) = B cos(kxx) cos(kyy) (20)

whereB is the normalization factor. By using (14), it can be derived
that

F
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B. Floquet Modes

In the case of a Floquet mode,F is given by

F(x; y) = Cej(k x+k y) (22)

whereC is the normalization factor andk2x+k
2
y = k2. Specific expres-

sions ofkx andky are given in [11]. By using (14), it can be derived
that

F
0(x; y) = j C � ej((�+k)=2k)�sinc

�� k

2�k
� : (23)

IV. NUMERICAL EXAMPLES

In this section we discuss through examples the numerical problems
connected with the use of (5) and (6), and how both the exact and the ap-
proximated expressions derived in this paper permit to overcome these
problems.

The first case we consider is the calculation of the coupling coeffi-
cients between two rectangular waveguides. When the eigenvalues and
eigenfunctions are known analytically, the calculation of the coupling
coefficients by using (5) and (6) fails only when� andk are exactly
coincident. When� = k, expressions (12) and (13) can be used in con-
junction with (16).

Conversely, when the eigensolutions of the Helmholtz equation are
obtained numerically, the use of (5) and (6) fails when the two eigen-
values are close. In fact, in expressions (5) and (6), the denominator
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Fig. 2. Cross section of the cross-shaped waveguideS and of the rectangular
waveguide
.

Fig. 3. Coupling integralI between the first TM mode of the cross-shaped
waveguide and theTM of the rectangular waveguide: the dots are obtained
by (5), the black line by (12) and (19), and the gray line by (12) and (17).

vanishes when� = k, whereas the numerator is not exactly zero when
� = k. This phenomenon is the origin of large errors in the calculation
of the coupling coefficients, as highlighted in the following example.

We consider the calculation of the coupling integralI1 between the
TM modes of a rectangular and a cross-shaped waveguide (see Fig. 2).
The normalization

S
 2 dS = �2 and



F
2 dS = k2 is assumed. In

this example, the eigenfunction of the cross-shaped waveguide was
obtained numerically by using the boundary integral-resonant mode
expansion (BI-RME) method [12].

Since the larger waveguide is rectangular, three different expressions
can be used for the calculation of the coupling integralI1: the clas-
sical expression (5), which exhibits the indeterminacy whenk = �;
thenovelformula (12) with the analytical expression (19) ofF 0, which
can be evaluated without numerical problems for anyk and�; thenovel
formula (12) with the approximated expression (19) ofF

0, which pro-
vides accurate results ifk � �.

Fig. 3 shows the value of the coupling integral between the
first TM-mode eigenfunction of the cross-shaped waveguide
(� = 1305 m�1) and the modeTM42 of the rectangular waveguide,
when varying the dimensiona of the rectangular domain. This dimen-

sion ranges from 12.96 to 10.66 mm, so that the ratiok=� ranges from
0.95 to 1.05. In Fig. 3, the dots denote the integral calculated by (5),
the black line refers to the exact calculation obtained by using (12)
and (19), whereas the gray line refers to the approximated calculation
obtained by using (12) and (17).

It is worth observing that no problem is encountered at any value
of the ratiok=� when using (12) and (19). Conversely, the use of (5)
provides the proper value of the integral ifk and� are different enough
(say, more than�2.5%), while a significant discrepancy from the exact
value is found whenk � �. Finally, the use of (12) and (17) leads to
a good approximation of the integral ifk � � [i.e., exactly where (5)
fails]. Therefore, it is a valid solution when the analytical expression of
F
0 is not available, provided that radial derivatives appearing in (17)

can be calculated numerically with a sufficient accuracy.

V. CONCLUSION

Alternative line-integral expressions were derived for the calcula-
tion of modal coupling integrals, which are valid also when the cutoff
frequencies of the two eigenfunctions coincide. Coupling coefficients
were obtained in the form of a power expansion. In particular cases,
closed forms were found. An example demonstrates the effectiveness
of these formulas.
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